Main menu
Aircraft Boeing 747-
Engines 4 x GE engines,
type CF6-
Laser TypeMegawatt Chemical Oxygen Iodine Laser (COIL)
Laser Wavelength1.315 microns
The US Air Force airborne laser, (ABL), designated YAL-
The ABL is being developed by the Air Force Research Laboratory and Team ABL, comprising Boeing, TRW (now Northrop Grumman Space Technologies) and Lockheed Martin.
Boeing is responsible for programme management, systems integration, battle management system and modification of the 747-
Lockheed Martin Space Systems is responsible for the target acquisition and beam control systems.
The US Missile Defense Agency (previously called the Ballistic Missile Defence Organisation) is responsible for the management of the program and it is executed by the USAF from Kirtland AFB in Albuquerque, New Mexico.
In 1996, the Department of Defense awarded Team ABL a $1.1bn Programme Definition and Risk Reduction (PDRR) contract for the development and test of an airborne laser weapon system. During tests at TRW's Capistrano test site in 1998, the laser demonstration module achieved a power level 10% higher than the requirement. In April 2000 the ABL final critical design review was completed.
ABL systems
The ABL aircraft carries the COIL laser which generates the killer laser beam, an infrared surveillance and high speed target acquisition system and a high precision laser target tracking beam control system.
The primary laser beam is generated by a megawatt chemical oxygen iodine laser (COIL) located at the rear of the fuselage, which lases at 1.315 micron wavelength. The high-
A low-
Intercept sequence
The ABL system uses infrared sensors for initial missile detection. After initial detection, three low power tracking lasers calculate missile course, speed, aimpoint, and air turbulence. Air turbulence deflects and distorts the laser beam. The ABL adaptive optics use the turbulence measurement to compensate for atmospheric errors. The main laser, located in a turret on the aircraft nose, is fired for 3 to 5 seconds, causing the missile to break up in flight near the launch area. The ABL is not designed to intercept TBMs in the terminal, or descending, flight phase. Thus, the ABL must be within a few hundred kilometers of the missile launch point. All of this occurs in approximately 8 to 12 seconds.
Operation
The ABL is designed to detect and destroy theatre ballistic missiles in the powered boost phase of flight immediately after missile launch while the aircraft loiters at an altitude of 40,000ft.
Missile launch is detected by a reconnaissance system such as satellite or airborne warning and control system (AWACS) aircraft and threat data is transmitted to the ABL aircraft by Link 16 communications.
A suite of infrared, wide-
The pointing and tracking system tracks the missile and provides launch and predicted impact locations. The turret at the nose of the aircraft swivels towards the target and a 1.5m telescope mirror system inside the nose focuses the laser beam onto the missile. The laser beam locks onto the missile, which is destroyed near its launch area within seconds of lock-
Where the missile carries liquid fuel, the laser can heat a spot on the missile's fuel tank, causing an increase in internal pressure resulting in catastrophic failure. Alternatively, the missile is heated in an arc around its circumference and crumples under atmospheric drag force or its own g-
Modification of the aircraft, involving installation of the turret in the aircraft's nose and modifications to accept the laser, optics and computer hardware, was completed in May 2002.
In July 2002, the modified aircraft took the first of a series of test flights. After receiving airworthiness certification, the aircraft was flown to Edwards Air Force Base, California, in December 2002, for the installation of systems. The aircraft returned to airworthiness flight testing in December 2004 following installation of the beam control / fire control system.
In November 2004, all six modules of the COIL laser were successfully fired for the first time. In August 2005, the ABL completed a series of flight tests demonstrating the performance of the beam and flight control systems. The BILL laser was delivered in January 2006.
In February 2007, the ABL began a series of flight tests, which included the first in-
This was followed by flight tests of the BILL illuminating laser and tests of TILL, BILL and a surrogate high-
Use against other targets
In theory, the ABL could be used against hostile fighter aircraft, cruise missiles, or even low-
Use against ground targets seems unlikely. Aside from the difficulty of acquiring and tracking a ground target, firing through the dense atmosphere would weaken the beam. Ground targets such as armored vehicles are not fragile enough to be damaged by a megawatt-